Water Resource Accounts National NCA Forum 2019 11th July 2019 **INSPIRING GREATNESS** ### Introduction - Ubiquitous, renewable why water accounts? - Quantify, understand, communicate - Stocks and <u>flows</u> - A long story integration of many upstream natural and engineered processes #### What has been done? - WRC funded projects: 1x SEEA-Water, 2x CWRR - Reviewed: SEEA-Water, WA+ and AWAS - Different perspective to SEEA-Water but compatible - Economics, national reporting, flows between environment and economy - Hydrological, water resource systems, management - Water Resource Accounts # Challenges - Climate high spatial and temporal variability - Natural and engineered flows - Scale influences the story: cause and effect - How much detail? Value for effort? - Data availability - Some good datasets - Monitoring network: sparse, declining - Monitoring mostly at a point scale - Urban, irrigation, mining abstractions and return flows - Stocks ## **Approach** - Hydrological modelling physical, conceptual - Strong land cover/use focus - ► Hierarchical system of land cover/use classes - Nested catchments report at different scales ## **Resource Base Sheet** Resource Base Sheet: Example (1000 km²) for 2015-10 to 2016-09 | ı | its | _ | | 4 | Λ.3 | - | • 3 | |---|------|---|---|---|-----|---|-----| | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1115 | | x | | u. | | 1- | | esource | Base S | nee | t; Exa | amp | oie (1 | 00 | U KIII- |) 10 | 7 201 | 5- 1 | 0 10 / | 201 | 10-09 | | | | | Unit | s = x | 10°1 | | | | | |---|--|------------|----------------------|-------------------|--|-----------------|-------------------|---------------|------------------|---|---|--------------------------------------|--|---|--|----------------------------|------------------------|------------------|---------------------------|--------------------|---------------------|-----|--|--| | Q _{in sw} Precipitation 0.0 2935357.4 0.0 % 659 mm 102.8 % | filow
5.4
% | | 2855888.5
100.0 % | Landscape ET | - Natural 1183498.4 266 mm 41.4 % - Cultivated 882336.0 198 mm 30.9 % - Urban 349925.6 79 mm 12.3 % - Mining 1013.7 0 mm 0.0 % - Waterbodies 95999.6 22 mm 3.4 % | | | | | | 266 mm 41.4 %
882336.0
198 mm 30.9 %
349925.6
79 mm 12.3 %
1013.7
0 mm 0.0 %
95999.6 | Water | .2 % | Total Evaporation (ET) | 2558380.2
574 mm 89.6 % | Transpiration Interception | 943660.7 745567.8 | | | | | | | | | | Gross Inflow
3047555.4
106.7 % | Net Inflow | | | | ater | 182122.0
6.4 % | Utilized Flow | 45606.9
1.6 % | Incremental ET | 45606.9
10 mm 1.6% | 2 | - Natural
- Cultivated | 0.0
0 mm 0.0 %
6371.2
1 mm 0.2 % | mm 0.0 %
371.2 | 2558380.2
89.6 % | Total Eva | 25
574 | Soil Water
Evaporation | 816969.0 | | | | | | On GW. | | | | | | | | | | | | ·
! | - Urban- Mining- Waterbodies | 39235.7
9 mm 1.4 %
0.0
0 mm 0.0 %
0.0
0 mm 0.0 % | | | | | Open Water
Evaporation | 52182.8 | | | | | | On Transfers
112198.0
3.9 % | | Ne | 7 | er | | Available Water | | | | | | Non-recoverable Flow
0.0
0.0 % | | | | | | l | | | | | | | | | ΔS _{fSW}
-120706.8
-27 mm -4.2% | | | Exploitable Water | Exploitable Wat
343115.2
12.0 % | | | | | Utilizable Outflow
136515.1
4.8 % | | | | | O _{out SW}
136515.1
4.8 % | | | | | | | | | | | | ΔS _{f SoilM}
-43840.4
-10 mm -1.5 % | | | | | | | | | | | | | R | | 6099 | Outflow
93.2
6 % | | Outflow | 297508.2
10.4 % | Q _{out GW} | 0.0 | | | | | ΔS _{fGW}
-27119.7
-6 mm -0.9 % | | | | | | | | | | | 5. | 0 76 | | | | Qout Transfers | 160993.2
5.6% | | | | | | | ## **Utilized Flow Sheet** Utilized Flows Sheet: Example (1000.0 km²) for 2015-10 to 2016-09 Units = $\times 10^3 \text{ m}^3$ | | | | | | _ | | | | | | | |----------|------------|-------------|-------------|----------|----------|-------------|--|--|--|--|--| | Gross | Gross | Surface | Natural | Returned | | otal | | | | | | | Demand | Withdrawal | Water | 0.0 | 0.0 | Cons | umed | | | | | | | 111845.7 | 110064.8 | 101424.7 | 0.0 % | 0.0 % | 388 | 61.0 | | | | | | | 100.0 % | 98.6 % | 92.2 % | Cultivated | Consumed | 35. | .3 % | | | | | | | | | | 6539.4 | 5011.0 | | | | | | | | | | | | 5.9 % | 76.6 % | | | | | | | | | | | | | Returned | | | | | | | | | | | | | 22.0 | | | | | | | | | | | | | 0.3 % | | | | | | | | | | | Groundwater | Urban | Consumed | Total | Surface | | | | | | | | | 0.0 | 103516.5 | 33841.2 | Returned | Water | | | | | | | | | 0.0% | 94.1 % | 32.7 % | 64148.6 | 59550.0 | | | | | | | | | 0.0 % | | Returned | 58.3 % | 92.8 % | | | | | | | | | | | 64126.6 | | | | | | | | | | | | | 61.9 % | | | | | | | | | | | | Mining | Consumed | | Groundwater | | | | | | | | | | 0.0 | 0.0 | | 0.0 | | | | | | | | | | 0.0 % | 0.0 % | | 0.0 % | | | | | | | | | Transfers | | Returned | | | | | | | | | | | 8640.1 | | 0.0 | | | | | | | | | | | 7.8 % | | 0.0 % | | | | | | | | | | | | Waterbodies | Consumed | | Transfers | | | | | | | | | | 8.8 | 8.8 | | 4598.6 | | | | | | | | | | 0.0 % | 100.0 % | | 7.2 % | | | | | | | | | | Hydropower | Returned | | | | | | | | | | | | 0.0 | 0.0 | | | | | | | | | | | | 0.0 % | 0.0 % | | | | | | | | | | Deficit | | | | | | | | | | | | | 1780.9 | | | | | | | | | | | | | | | 1 | .6 % | | | | | | | | ## **EI4WS Project** - Explore links between various NCA: - water resource, ecological infrastructure, ecosystem service - ecosystems as producer of water services vs consumer - Water resource accounts for demonstration catchments - uMngeni and Breede Catchments - Explore use of water resource accounts - Build capacity in water resource accounting MAPS of ecological infrastructure Catchment water resource ACCOUNTS Ecosystem service accounts El **extent** account El condition account Ecosystem service supply Ecosystem service **use** (& valuation?) ### Vision - Water resource accounts - For the whole of South Africa - Annually (possibly monthly) - Quaternary catchment scale (or smaller) - An operational water resource accounting system that provides modelled spatially and temporally consistent summaries of the country's water resources to promote informed, sustainable and equitable use of these resources